

# **Fexofenadine Hydrochloride Tablets**

Type of PostingRevision BulletinPosting Date18-Dec-2020Official Date1-Jan-2021

**Expert Committee** Small Molecules 5

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 5 Expert Committee has revised the Fexofenadine Hydrochloride Tablets monograph. The purpose for the revision is to revise the *Acceptance criteria* in the *Assay* from "NLT 95.0% and NMT 105.0%" to "NLT 93.0% and NMT 107.0%," based on a manufacturer's approved specifications. The *Definition* is also revised accordingly.

The Fexofenadine Hydrochloride Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Gerald J. Hsu, Senior Scientific Liaison (240-221-2097 or <a href="mailto:gdh@usp.org">gdh@usp.org</a>).

# **Fexofenadine Hydrochloride Tablets**

# **DEFINITION**

#### Change to read:

Fexofenadine Hydrochloride Tablets contain NLT  $^{\blacktriangle}93.0\%_{\blacktriangle}$  (RB <sub>1-Jan-2021)</sub> and NMT  $^{\blacktriangle}107.0\%_{\blacktriangle}$  (RB <sub>1-Jan-2021)</sub> of the labeled amount of fexofenadine hydrochloride ( $C_{32}H_{39}NO_4 \cdot HCI$ ).

#### **IDENTIFICATION**

• A. <u>Spectroscopic Identification Tests (197), Infrared Spectroscopy:</u> 197K

**Standard solution:** Transfer 60 mg of <u>USP Fexofenadine Hydrochloride RS</u> to a suitable capped tube and add 10 mL of a mixture of <u>acetonitrile</u> and <u>methanol</u> (10:1).

**Sample solution:** Transfer an equivalent to 60 mg of fexofenadine hydrochloride, from a sufficient number of weighed and finely powdered Tablets, to a suitable capped tube, and add 10 mL of a mixture of <a href="acetonitrile">acetonitrile</a> and <a href="mailto:methanol">methanol</a> (10:1).

Analysis: Shake or mix the Standard solution and Sample solution on a vortex mixer for 1–2 min to disperse the sample. Allow the solution to stand for 10 min, or centrifuge for 2–3 min. Pass the liquid into a 50-mL beaker using a 0.45-µm polytetrafluoroethlyene syringe filter. Evaporate the solvent until about 0.5 mL remains, using a stream of nitrogen with gentle heating (do not exceed 75°). Add 5 mL of water and 5 drops of dilute hydrochloric acid, and stir to induce precipitation. Chill in an ice bath for 30 min. Filter the solution through a 10- to 15-µm sintered-glass crucible. Dry the precipitate in an air oven for 1 h at 105° oven for 1 h at 105°. Prepare a bromide dispersion from the residue.

**Acceptance criteria:** The IR absorption spectrum of the potassium bromide dispersion of the residue from the sample exhibits maxima only at the same wavelengths as that of a potassium bromide dispersion from the Standard.

• **B.** The retention time of the major peak in the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

#### **ASSAY**

#### Change to read:

PROCEDURE

Solution A: Glacial acetic acid and water (17:983). Dilute 100 mL of this solution with water to 1 L.

**Solution B:** Dilute 15 mL of a solution containing <u>acetonitrile</u> and <u>triethylamine</u> (1:1) with *Solution A* to 1 L. Adjust with <u>phosphoric acid</u> to a pH of 5.25.

**Diluent:** Acetonitrile and Solution A (3:1)

**Mobile phase:** Acetonitrile and Solution B (9:16)

**Standard stock solution:** 0.25 mg/mL of <u>USP Fexofenadine Hydrochloride RS</u> in *Diluent* **Standard solution:** 0.015 mg/mL from the *Standard stock solution* in *Mobile phase* 

**Sample stock solution:** Transfer a sufficient number of whole Tablets (NLT 10) to a suitable volumetric flask, add *Solution A* (equivalent to 20% of the total flask volume), and shake by mechanical means at a high speed for 30 min or until the Tablets are fully disintegrated and finely dispersed. Add <u>acetonitrile</u> (sufficient to fill the flask to 80% of its volume), and shake by mechanical means for 60 min. Dilute with *Diluent* to volume. Pass a portion of this solution through a polytetrafluoroethylene filter having a 0.45-µm or finer pore size, and use the filtrate. Dilute, if necessary, with *Diluent* to obtain a solution containing an equivalent to 1.2 mg/mL of fexofenadine hydrochloride.

**Sample solution:** 0.018 mg/mL from the *Sample stock solution* in *Mobile phase* 

**Chromatographic system** 

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

**Column:** 4.6-mm  $\times$  25-cm; 5- $\mu$ m packing <u>L11</u>

Column temperature: 35° Flow rate: 1.5 mL/min Injection volume: 20 µL

System suitability

**Sample:** Standard solution **Suitability requirements Tailing factor:** NMT 2.0

Relative standard deviation: NMT 2.0%

**Analysis** 

Samples: Standard solution and Sample solution

Calculate the percentage of  $C_{32}H_{39}NO_4 \cdot HCl$  in the portion of Tablets taken:

Result = 
$$(r_{IJ}/r_S) \times (C_S/C_{IJ}) \times 100$$

 $r_{II}$  = peak response from the Sample solution

 $r_{\rm S}$  = peak response from the Standard solution

 $C_S$  = concentration of <u>USP Fexofenadine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 $C_{ij}$  = nominal concentration of fexofenadine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 493.0%-107.0% (RB 1-Jan-2021)

# **PERFORMANCE TESTS**

• Dissolution (711)

Test 1

Medium: 0.001 N hydrochloric acid; 900 mL, deaerated

**Apparatus 2:** 50 rpm **Time:** 10 and 30 min

Determine the percentages of the labeled amount of  $C_{32}H_{39}NO_4 \cdot HCl$  dissolved by using the following method.

**Solution A:** 1.0 g of <u>monobasic sodium phosphate</u>, 0.5 g of <u>sodium perchlorate</u>, and 0.3 mL of concentrated phosphoric acid in 300 mL of water

**Mobile phase:** Acetonitrile and Solution A (7:3)

**Standard solution:** <u>USP Fexofenadine Hydrochloride RS</u> in *Medium* to obtain a solution having a known concentration similar to that expected for the solution under test. [Note—A small amount of <u>methanol</u>, not exceeding 0.5% of the total volume, can be used to dissolve fexofenadine hydrochloride.]

**System suitability solution:** 0.44 mg/mL of <u>USP Fexofenadine Related Compound A RS</u> in <u>water</u>. Transfer 1.0 mL of this solution into a vial, and add 40 mL of the *Standard solution*. [Note—A small amount of <u>glacial acetic acid</u>, not exceeding 5% of the total volume, can be used to dissolve fexofenadine related compound A.]

**Sample solution:** Pass portions of the solution under test through a glass fiber filter having a 0.45-μm pore size.

**Chromatographic system** 

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

**Column:** 4.6-mm  $\times$  10-cm; packing <u>L1</u>

Flow rate: 1 mL/min

Injection volume: 2-3 µg column load of fexofenadine hydrochloride

System suitability

Samples: Standard solution and System suitability solution

**Suitability requirements** 

Resolution: NLT 2.0 between fexofenadine and fexofenadine related compound A, System suitability

solution

Relative standard deviation: NMT 2.0%, Standard solution

**Analysis** 

Samples: Standard solution and Sample solution

Calculate the percentage of  $C_{32}H_{39}NO_4 \cdot HCl$  dissolved in the portion of Tablets taken:

Result = 
$$(r_I/r_S) \times (C_S/L) \times D \times V \times 100$$

 $r_{II}$  = peak area from the Sample solution

 $r_S$  = peak area from the Standard solution

 $C_S$  = concentration of <u>USP Fexofenadine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

L = Tablet label claim (mg)

D = dilution factor of the Sample solution

V = volume of Medium, 900 mL

**Tolerances:** NLT 60% (Q) of the labeled amount of  $C_{32}H_{39}NO_4 \cdot HCl$  is dissolved in 10 min; NLT 80% (Q) of the labeled amount of  $C_{32}H_{39}NO_4 \cdot HCl$  is dissolved in 30 min.

**Test 2:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.

Medium: 0.001 N hydrochloric acid; 900 mL

**Apparatus 2:** 50 rpm. Use paddles and shafts coated with Teflon.

Time: 30 min

Determine the percentages of the labeled amount of  $C_{32}H_{39}NO_4 \cdot HCI$  dissolved by using the following method.

**Solution A:** 7 mg/mL of ammonium acetate in water. Adjust with glacial acetic acid to a pH of  $4.0 \pm 0.05$ .

**Mobile phase:** Acetonitrile and Solution A (2:3)

**Standard solution 1:** Transfer 20 mg of <u>USP Fexofenadine Hydrochloride RS</u> to a 100-mL volumetric flask. Add 3.0 mL of <u>methanol</u>, and mix. Dilute with *Medium* to volume.

**Standard solution 2:** Transfer 15.0 mL of *Standard solution 1* to a 50-mL volumetric flask. Dilute with *Medium* to volume.

**Standard solution 3:** Transfer 7.5 mL of *Standard solution 1* to a 50-mL volumetric flask. Dilute with *Medium* to volume.

Sample solution: Pass portions of the solution under test through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 259 nm

Column: 4.6-mm × 15-cm; packing L11

Flow rate: 1.5 mL/min

Injection volume: 10 μL for Standard solution 1 and 30 μL for Standard solutions 2 and 3

System suitability

Sample: Any of the Standard solutions

**Suitability requirements Tailing factor:** NMT 2.0

Relative standard deviation: NMT 2.0%

**Analysis** 

Samples: Standard solutions 1, 2, and 3 and the Sample solution

Calculate the percentage of  $C_{32}H_{39}NO_4 \cdot HCl$  dissolved in the portion of Tablets taken:

Result = 
$$(r_{I}/r_{S}) \times (C_{S}/L) \times V \times 100$$

 $r_{II}$  = peak area from the Sample solution

 $r_S$  = peak area from the Standard solution

 $C_c$  = concentration of the appropriate Standard solution (mg/mL)

V = volume of Medium, 900 mL

L = Tablet label claim (mg)

**Tolerances:** NLT 75% (Q) of the labeled amount of  $C_{32}H_{39}NO_4 \cdot HCl$  is dissolved.

**Test 3:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*.

**Medium:** 0.001 N <u>hydrochloric acid</u>; 900 mL for Tablets labeled to contain 30 mg or 60 mg, and 1800 mL for Tablets labeled to contain 180 mg

Apparatus 2: 50 rpm

Time: 45 min

**Buffer solution:** 6.64 g/L of monobasic sodium phosphate monohydrate and 0.84 g/L of sodium perchlorate monohydrate in water. Add 4 mL/L of triethylamine. Adjust with phosphoric acid to a pH of  $2.3 \pm 0.1$ .

**Mobile phase:** Buffer solution and acetonitrile (65:35)

**Standard stock solution:** 0.5 mg/mL of <u>USP Fexofenadine Hydrochloride RS</u> in *Mobile phase*. This solution is stable for 3.5 months under refrigeration or for 18 days at room temperature.

**Standard solution:** Dilute the *Standard stock solution* with *Medium* to obtain a final concentration of 0.07 mg/mL of <u>USP Fexofenadine Hydrochloride RS</u>. This solution is stable for 8 days under refrigeration or for 24 h at room temperature.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

**Chromatographic system** 

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 220 nm

**Column:** 4.6-mm  $\times$  10-cm; 5- $\mu$ m packing <u>L1</u>

Column temperature: 40° Flow rate: 2.5 mL/min Injection volume: 20 µL

System suitability

**Sample:** Standard solution **Suitability requirements Tailing factor:** NMT 2.0

Column efficiency: NLT 1000 theoretical plates

#### Relative standard deviation: NMT 2.0%

Calculate the percentage of fexofenadine hydrochloride dissolved in the portion of Tablets taken:

Result = 
$$(r_U/r_S) \times (C_S/L) \times V \times 100$$

 $r_{II}$  = peak response from the Sample solution

 $r_{\rm S}$  = peak response from the Standard solution

 $C_S$  = concentration of the *Standard solution* (mg/mL)

L = Tablet label claim (mg)

V = volume of Medium, 900 or 1800 mL

**Tolerances:** NLT 75% (Q) of the labeled amount of fexofenadine hydrochloride is dissolved.

**Test 4:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 4*.

Medium: 0.001 N hydrochloric acid; 900 mL, degassed

Apparatus 2: 75 rpm

Time: 15 min

Buffer solution: 6.64 g/L of monobasic sodium phosphate monohydrate and 0.84 g/L of sodium

perchlorate in water. Adjust with phosphoric acid to a pH of 2.0.

Mobile phase: Acetonitrile, Buffer solution, and triethylamine (50: 50: 0.3)

**Standard stock solution:** 0.55 mg/mL of <u>USP Fexofenadine Hydrochloride RS</u> in 0.01 N hydrochloric acid **Standard solution:** Dilute the *Standard stock solution* with *Medium* to obtain a final concentration of 0.22 mg/mL of <u>USP Fexofenadine Hydrochloride RS</u>. Pass a portion of the solution through a suitable filter of 0.45-µm pore size.

Sample solution: Pass a portion of the solution under test through a suitable filter.

# **Chromatographic system**

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 220 nm

**Column:** 4.6-mm  $\times$  25-cm; 5- $\mu$ m packing <u>L11</u>

Column temperature: 25° Flow rate: 1.5 mL/min Injection volume: 20 µL

Run time: NLT 2.7 times the retention time of fexofenadine

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of fexofenadine hydrochloride ( $C_{32}H_{39}NO_4 \cdot HCI$ ) dissolved in the portion of Tablets taken:

Result = 
$$(r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

 $r_U$  = peak response from the Sample solution

 $r_S$  = peak response from the *Standard solution* 

 $C_S$  = concentration of the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

**Tolerances:** NLT 80% (Q) of the labeled amount of fexofenadine hydrochloride ( $C_{32}H_{39}NO_4 \cdot HCI$ ) is dissolved.

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

#### **IMPURITIES**

#### **ORGANIC IMPURITIES**

PROCEDURE

Solution A, Solution B, Diluent, Mobile phase, Standard stock solution, Sample stock solution, and Sample solution: Prepare as directed in the *Assay*.

**Standard solution:** 0.015 mg/mL of fexofenadine hydrochloride and 0.0045 mg/mL of fexofenadine related compound A from *Quantitative limit solution* and the *Standard stock solution* in *Mobile phase* 

**System suitability stock solution:** Dilute 4.0 mL of the *Standard stock solution* with *Mobile phase* to 100 mL.

**System suitability solution:** Dilute 6.0 mL of the *System suitability stock solution* with *Mobile phase* to 100 mL.

**Quantitative limit solution:** 0.05 mg/mL of <u>USP Fexofenadine Related Compound A RS</u> in *Diluent* **Chromatographic system** 

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

**Column:** 4.6-mm  $\times$  25-cm; 5- $\mu$ m packing L11

Column temperature: 35° Flow rate: 1.5 mL/min Injection volume: 20 µL

System suitability

**Samples:** Standard solution and System suitability solution [Note—For the relative retention times, see <u>Impurity Table 1</u>.]

Suitability requirements

Resolution: NLT 7 between fexofenadine and fexofenadine related compound A, Standard solution

Tailing factor: NMT 2.0, Standard solution

**Relative standard deviation:** NMT 6%, *System suitability solution*; NMT 2.0% and NMT 3.0% for fexofenadine and fexofenadine related compound A, *Standard solution* 

### **Analysis**

Samples: Standard solution, Sample stock solution, and Sample solution

Calculate the percentage of fexofenadine related compound A in the portion of Tablets taken:

Result = 
$$(r_{II}/r_S) \times (C_S/C_{II}) \times 100$$

 $r_{II}$  = peak area of fexofenadine related compound A in the Sample stock solution

 $r_{\rm S}$  = peak area of fexofenadine related compound A in the Standard solution

 $C_S$  = concentration of fexofenadine related compound A in the Standard solution (mg/mL)

C,, = concentration of fexofenadine hydrochloride in the Sample stock solution

Calculate the percentage of the decarboxylated degradant  $[(\pm)-4-[1-hydroxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-isopropylbenzene] in the portion of Tablets taken:$ 

Result = 
$$(r_{IJ}/r_S) \times (C_S/C_{IJ}) \times (1/F) \times 100$$

 $r_{II}$  = peak area of the decarboxylated degradant in the Sample stock solution

 $r_{\rm S}$  = peak area of fexofenadine in the Standard solution

 $C_S$  = concentration of <u>USP Fexofenadine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 $C_{ij}$  = concentration of fexofenadine hydrochloride in the Sample stock solution

F = relative response factor (see <u>Impurity Table 1</u>)

Calculate the percentage of any other impurities in the portion of Tablets taken:

Result = 
$$r_U/(F \times r_S + r_T) \times 100$$

 $r_{II}$  = peak area for each individual unknown impurity in the Sample stock solution

F = difference in concentration between the Sample stock solution and the Sample solution, 66.7

 $r_{\rm S}$  = peak area response for fexofenadine in the Sample solution

 $r_T$  = sum of the peak areas of all unknown impurities in the Sample stock solution

[Note—Disregard any peak below 0.05%.]

# **Acceptance criteria**

Individual impurities: See *Impurity Table 1*.

**Total impurities: NMT 0.5%** 

# **Impurity Table 1**

| Name                            | Relative<br>Retention<br>Time | Relative<br>Response<br>Factor | Acceptance<br>Criteria,<br>NMT (%) |
|---------------------------------|-------------------------------|--------------------------------|------------------------------------|
| Fexofenadine related compound A | 1.6                           | _                              | 0.4                                |
| Decarboxylated degradant        | 6.7                           | 1.1                            | 0.15                               |
| Fexofenadine                    | 1.0                           | _                              | _                                  |
| Any individual other impurity   | _                             | 1.0                            | 0.2                                |

# **ADDITIONAL REQUIREMENTS**

- Packaging and Storage: Preserve in well-closed containers, and store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11)

USP Fexofenadine Hydrochloride RS

USP Fexofenadine Related Compound A RS

2-(4-{4-[4-(Hydroxydiphenylmethyl)piperidin-1-yl]butanoyl}phenyl)-2-methylpropanoic acid;

Also known as Benzeneacetic acid,  $4-[1-oxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]butyl]-\alpha,\alpha-dimethyl.$ 

 $C_{32}H_{37}NO_4$  499.65

# Page Information: Not Applicable DocID: © 2020 The United States Pharmacopeial Convention All Rights Reserved.