# Insulin

GIVEQCCTSI CSLYQLENYC FVNQHLCGSH LVEALYLVCG **ERGFFYTPKA** 

 $C_{256}H_{381}N_{65}O_{76}S_6$ Insulin (pig) [12584-58-6]. 5777.54

GIVEQCCASV CSLYQLENYC

FVNQHLCGSH **ERGFFYTPKA** LVEALYLVCG

 $C_{254}H_{377}N_{65}O_{75}S_{6}$ Insulin (ox) [11070-73-8]. 5733.49

#### **DEFINITION**

### Change to read:

Insulin is a two-chain peptide hormone consisting of 51 amino acids, and its structure corresponds to native insulin produced in vivo by the beta cells of the pancreas. The A-chain is composed of 21 amino acids, and the Bchain is composed of 30 amino acids. ▲ USP 1-Mav-2019 It is obtained from the pancreas of healthy bovine or porcine animals, or both, used for food by humans. Its potency is NLT 26.5 USP Insulin Units/mg, calculated on the dried basis; Insulin labeled as purified contains NLT 27.0 USP Insulin Units/mg, calculated on the dried basis.

▲ USP 1-May-2019 [Note—1 USP Insulin Unit is equivalent to 0.0342 mg of pure Insulin derived from beef or 0.0345 mg of pure Insulin derived from pork.]

## **IDENTIFICATION**

• A. The retention time of the major peak of the Sample solution corresponds to that of the appropriate species of the Identification solution, as obtained in the Assay. [Note—It may be necessary to inject a mixture of Sample solution and Identification solution.]

## Delete the following:

# **AB. PEPTIDE MAPPING**

Sulfate buffer: 2.0 M ammonium sulfate and 0.5 M sulfuric acid (1:1)

**Enzyme solution:** 500 units/mL of *Staphylococcus aureus* V-8 protease activity in water

**HEPES buffer:** 0.1 M HEPES (*N*-2-hydroxyethylpiperazine-*N*'-2-ethanesulfonic acid). Adjust with 5 M sodium hydroxide to a pH of 7.5 before diluting with water to a final volume.

Solution A: Acetonitrile, water, and Sulfate buffer (100:700:200)

Solution B: Acetonitrile, water, and Sulfate buffer (400:400:200)

Mobile phase: See Table 1.

#### Table 1

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 0             | 90                | 10                |
| 60            | 30                | 70                |
| 65            | 0                 | 100               |

Table 1 (continued)

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 70            | 0                 | 100               |
| 71            | 90                | 10                |
| 86            | 90                | 10                |

Standard digest solution: 2 mg/mL of USP Insulin RS of the appropriate species in 0.01 N hydrochloric acid. Transfer 500 µL of the resulting solution to a clean vial. Add 2.0 mL of HEPES buffer and 400 µL of Enzyme solution, and incubate at 25° for 6 h. Quench the digestion by adding 2.9 mL of Sulfate buffer.

Sample digest solution: 2 mg/mL of Insulin in 0.01 N hydrochloric acid, mix to dissolve. Transfer 500 µL of the resulting solution to a clean vial. Add 2.0 mL of HEPES buffer and 400 µL of Enzyme solution, and incubate at 25° for 6 h. Quench the digestion by adding 2.9 mL of Sulfate buffer.

# Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 214 nm

Column: 4.6-mm × 10-cm; packing L1

Column temperature: 40° Flow rate: 1 mL/min System suitability

Sample: Standard digest solution

Suitability requirements

Chromatogram comparability: The chromatogram of the Standard digest solution corresponds to that of the reference chromatogram provided with USP Insulin RS of the appropriate species.

Resolution: NLT 1.9 between digest fragments II and

[Note—Fragment I elutes at the same time in insulin derived from pork and Insulin Human; Fragment II elutes at the same time in Insulin Human and insulin derived from beef and pork; and Fragment III elutes at the same time in insulin derived from beef and pork.]

Tailing factor: NMT 1.5

### Analysis

Samples: Standard digest solution and Sample digest

Using the gradient program, run a blank. Separately inject equal volumes of the Standard digest solution and the Sample digest solution, and record the responses of each peak.

**Acceptance criteria:** The chromatographic profile of the Sample digest solution corresponds to that of the Standard digest solution. ▲ USP 1-May-2019

# Add the following:

# 4. B. PHYSICOCHEMICAL ANALYTICAL PROCEDURES FOR

**INSULINS** (121.1), *Peptide Mapping*: Proceed as directed in the chapter, except for the Mobile phase and System suitability.

Mobile phase: See Table 1.

#### Table 1

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 0             | 90                | 10                |
| 60            | 30                | 70                |

Table 1 (continued)

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 65            | 0                 | 100               |
| 70            | 0                 | 100               |
| 71            | 90                | 10                |
| 86            | 90                | 10                |

System suitability

Sample: Standard solution Suitability requirements

Resolution: NLT 1.9 between digest fragments II and III [Note—Fragment I elutes at the same time in insulin derived from pork and Insulin Human; Fragment II elutes at the same time in Insulin Human and insulin derived from beef and pork; and Fragment III elutes at the same time in insulin derived from beef and pork.]

**Tailing factor:** NMT 1.5 for digest fragments II and III **Chromatogram similarity:** The chromatogram of the *Standard solution* corresponds to that of the reference chromatogram provided with insulin of the appropriate species.

Acceptance criteria: Meets the requirements 

■ USP 1-May-2019

## Add the following:

**^• C. Insulin Assays** (121), Assay, Bioidentity Test: Meets the requirements **▲** USP 1-May-2019

## **ASSAY**

#### PROCEDURE

**Solution A:** Dissolve 28.4 g of anhydrous sodium sulfate in 1000 mL of water. Pipet 2.7 mL of phosphoric acid into the solution, and adjust with ethanolamine to a pH of 2.3, if necessary.

**Mobile phase:** Acetonitrile and *Solution A* (26:74). [NOTE—The acetonitrile is warmed to a temperature of NLT 20° to avoid precipitation.]

System suitability solution: 1.5 mg/mL of Insulin in 0.01 N hydrochloric acid. Allow to stand at room temperature for NLT 3 days to obtain a solution containing NLT 5% of A-21 desamido insulin.

[NOTE—The Identification solution, Standard solution, and Sample solution may be stored at room temperature for up to 12 h or in a refrigerator for up to 48 h.]

Identification solution: 0.6 mg/mL each of USP Insulin Pork RS and USP Insulin Beef RS in 0.01 N hydrochloric acid

Standard solution: 1.5 mg/mL of insulin of the appropriate species, either USP Insulin RS or USP Insulin Beef RS, in 0.01 N hydrochloric acid. For insulin of mixed species prepare a solution containing 1.3 mg/mL of USP Insulin Pork RS and 0.25 mg/mL of USP Insulin Beef RS in 0.01 N hydrochloric acid.

Sample solution: 1.5 mg/mL of Insulin in 0.01 N hydrochloric acid

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 214 nm

Column: 4.6-mm × 15-cm; packing L1

Column temperature: 40° Flow rate: 1 mL/min Injection volume: 20 µL

System suitability

Samples: System suitability solution and Standard solution

**Suitability requirements** 

**Resolution:** NLT 2.0 between insulin and A-21 desamido insulin, *System suitability solution* **Tailing factor:** NMT 1.8 for the insulin peak, *System* 

suitability solution

Relative standard deviation: NMT 1.6%, Standard solution

**Analysis** 

Samples: Identification solution, Standard solution, and Sample solution

Measure the peak responses for insulin and A-21 desamido insulin, using the chromatogram of the *Identification solution* to identify the insulin peaks.

For Insulin derived from a single species, calculate the potency on the undried basis, in USP Insulin Units/mg, of Insulin in the *Sample solution*:

Result = 
$$(\Sigma r_U/\Sigma r_S) \times (C_S/C_U)$$

 $r_U$  = sum of the peak responses of insulin and A-21 desamido insulin from the *Sample solution* 

 $r_s$  = sum of the peak responses of insulin and A-21 desamido insulin from the *Standard solution* 

C<sub>S</sub> = concentration of insulin of the appropriate species, either USP Insulin Beef RS or USP Insulin Pork RS, in the *Standard solution* (USP Insulin Units/mL)

C<sub>U</sub> = concentration of Insulin in the Sample solution (mg/mL)

For Insulin derived from a mixture of beef insulin and pork insulin, calculate the total potency as the sum of the potencies of the beef-derived insulin and pork-derived insulin, determined separately.

Acceptance criteria: NLT 26.5 USP Insulin Units/mg on the dried basis; Insulin labeled as purified contains NLT 27.0 USP Insulin Units/mg on the dried basis.

# **OTHER COMPONENTS**

## Change to read:

**^ • ^ZINC DETERMINATION** (591) **^ (**IRA 1-Jan-2019) **Acceptance criteria:** NMT 1.0% on the dried basis **^** USP 1-May-2019

## **PRODUCT-RELATED SUBSTANCES AND IMPURITIES**

## Change to read:

# **△• PRODUCT-RELATED SUBSTANCES △** USP 1-May-2019

**Solution A:** Dissolve 28.4 g of anhydrous sodium sulfate in 1000 mL of water. Pipet 2.7 mL of phosphoric acid into the solution, and adjust with ethanolamine to a pH of 2.3, if necessary.

Solution B: Acetonitrile and Solution A (18:82)
Solution C: Acetonitrile and Solution A (50:50)

Mobile phase: See Table 2.

Table 2

| Table 2       |                   |                   |  |  |
|---------------|-------------------|-------------------|--|--|
| Time<br>(min) | Solution B<br>(%) | Solution C<br>(%) |  |  |
| 0             | 81                | 19                |  |  |
| 60            | 81                | 19                |  |  |
| 85            | 36                | 64                |  |  |
| 91            | 36                | 64                |  |  |
| 92            | 81                | 19                |  |  |

System suitability solution: 1.5 mg/mL of Insulin in 0.01 N hydrochloric acid. Allow to stand at room temperature for NLT 3 days to obtain a solution containing NLT 5% of A-21 desamido insulin.

[Note—Standard solutions A–C may be stored at room temperature for up to 12 h and in a refrigerator for up to 48 h.]

**Standard solution A:** 3.75 mg/mL of insulin of the appropriate species, either USP Insulin RS or USP Insulin Beef RS, in 0.01 N hydrochloric acid. For insulin of mixed species prepare a solution containing 3.2 mg/mL of USP Insulin Pork RS and 0.6 mg/mL of USP Insulin Beef RS in 0.01 N hydrochloric acid.

Standard solution B: 0.375 mg/mL of insulin of the appropriate species, either USP Insulin Beef RS or USP Insulin Pork RS, in 0.01 N hydrochloric acid prepared as follows. Pipet 1 mL of Standard solution A into a 10-mL volumetric flask, dilute with 0.01 N hydrochloric acid to volume, and mix.

Standard solution C: 0.0375 mg/mL of insulin of the appropriate species, either USP Insulin Beef RS or USP Insulin Pork RS, in 0.01 N hydrochloric acid prepared as follows. Pipet 1 mL of Standard solution B into a 10-mL volumetric flask, dilute with 0.01 N hydrochloric acid to volume, and mix.

Sample solution: 3.75 mg/mL of Insulin in 0.01 N hydrochloric acid. Prepare the solution in a capped vial, cap the vial, and shake gently to dissolve. Store the solution for NMT 2 h at room temperature or for NMT 12 h in a refrigerator.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 214 nm

Column: 4.6-mm × 25-cm; packing L1

Column temperature: 40° Flow rate: 1 mL/min Injection volume: 20 µL

System suitability

Samples: System suitability solution, Standard solution A, Standard solution B, and Standard solution C [Note—Adjust the Mobile phase composition and the duration of the isocratic elution to obtain a retention time of about 31 min for insulin, with the A-21 desamido insulin eluting just prior to the start of the gradient elution phase.]

Suitability requirements for the System suitability solution

Resolution: NLT 2.0 between insulin and A-21 desamido insulin

Tailing factor: NMT 1.8 for the insulin peak Suitability requirements for the Standard solutions Calculate the factor  $X_1$ :

$$X_1 = (r_R/r_A) \times D$$

= peak response from Standard solution B  $r_{B}$ = peak response from Standard solution A

= dilution factor, 10

Result: Between 0.91 and 1.09 Calculate the factor  $X_2$ :

$$X_2 = (r_C/r_A) \times D$$

= peak response from Standard solution C  $r_{c}$ = peak response from Standard solution A

D = dilution factor, 100 Result: Between 0.7 and 1.3

Analysis

**Sample:** Sample solution

Calculate the percentage of insulin, A-21 desamido insulin, and other insulin-related

substances 

LUSP 1-May-2019 in the portion of Insulin taken: Calculate the percentage of Insulin (%1):

Result = 
$$(r_{\parallel}/r_{\scriptscriptstyle T}) \times 100$$

= peak response of insulin from the Sample  $r_{l}$ solution

= sum of the responses of all the peaks from the  $r_T$ Sample solution

Calculate the percentage of A-21 desamido insulin (%D):

Result = 
$$(r_D/r_T) \times 100$$

= peak response of A-21 desamido insulin from  $r_D$ the Sample solution

= sum of the responses of all the peaks from the Sample solution

Calculate the percentage of other insulin-related substances: ▲ USP 1-May-2019

Result = 
$$100 - (\%I + \%D)$$

Acceptance criteria: NMT 10.0% of A-21 desamido insulin, and NMT 5.0% of other insulin-related

**Substances** USP 1-May-2019

For Insulin derived from a single species, measure the responses of any peaks corresponding to beef insulin or pork insulin, and calculate the concentration as a percentage of  $r_{\tau}$ . The amount of cross-contamination is NMT 1.0%.

# Change to read:

• PHYSICOCHEMICAL ANALYTICAL PROCEDURES FOR **INSULINS** (121.1), Limit of High Molecular Weight Proteins: Acceptance criteria: NMT 1.0%

## **PROCESS-RELATED IMPURITIES**

# Add the following:

• PROINSULIN CONTENT: NMT 10 ng/mg, determined by a validated method 

LUSP 1-May-2019

## **SPECIFIC TESTS**

## Delete the following:

• Insulin Assays (121), Assay, Bioidentity Test: Meets the requirements ▲ USP 1-May-2019

Loss on Drying (731)

Sample: 200 mg

Analysis: Dry the Sample at 105° for 16 h. Acceptance criteria: NMT 10.0%

#### **Delete the following:**

**4. ZINC DETERMINATION** (591), Procedure, Dithizone Method Sample: 10 mg

Acceptance criteria: NMT 1.0% on the dried

basis  $_{\text{USP 1-May-2019}}$  
• BACTERIAL ENDOTOXINS TEST  $\langle 85 \rangle$ : NMT 10 USP Endotoxin Units/mg of insulin

 Microbial Enumeration Tests (61) and Tests for Specified Microorganisms (62): The total bacterial count does not exceed 3 × 10<sup>2</sup> cfu/g, the test being performed on a portion of about 0.2 g, accurately weighed.

## **ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store, protected from light, in a freezer.
- LABELING: Label it to indicate the one or more animal species to which it is related, as pork, beef, or a mixture of pork and beef. If the Insulin is purified, label it as such.
   USP REFERENCE STANDARDS (11)
- USP REFERENCE STANDARDS (1 USP Insulin Beef RS USP Insulin Pork RS