

Minocycline Hydrochloride Extended-Release Tablets

Type of PostingRevision BulletinPosting Date18-Dec-2020Official Date1-Jan-2021

Expert Committee Small Molecules 1

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 1 Expert Committee has revised the Minocycline Hydrochloride Extended-Release Tablets monograph. The purpose for the revision is to add_Dissolution Test 8 to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution tests. The revision also necessitates a change in the table numbering in the test for *Organic Impurities*.

• Dissolution Test 8 was validated using a Hypersil BDS C18 brand of 4.6-mm x 15-cm column with L1 packing. The typical retention time for minocycline is about 6 min.

The Minocycline Hydrochloride Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Praveen K. Pabba, Scientific Liaison (301-816-8540 or pkp@usp.org).

Minocycline Hydrochloride Extended-Release Tablets

DEFINITION

Minocycline Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- **B.** The UV absorption spectrum of the major peak of the *Sample solution* and that of the *Standard solution* exhibit maxima and minima at the same wavelengths, as obtained in the *Assay*.

ASSAY

PROCEDURE

Protect solutions containing minocycline from light.

Buffer: 3.5 g/L of <u>tetrabutylammonium hydrogen sulfate</u>, 2 g/L of <u>anhydrous citric acid</u>, and 6.8 g/L of <u>monobasic potassium phosphate</u>. Adjust with 10 N <u>sodium hydroxide</u> to a pH of 7.0.

Mobile phase: Acetonitrile and Buffer (24:76)

Diluent: Acetonitrile and water (20:80)

Standard solution: 0.045 mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> in *Diluent*. Store at 4° and use within 24 h.

Sample stock solution: Nominally about 0.9 mg/mL of minocycline from Tablets prepared as follows. Transfer a suitable portion of finely powdered Tablets (NLT 10) to a suitable volumetric flask. Add <u>acetonitrile</u>, using 20% of the final volume, and mix vigorously for 15 min. Add <u>water</u>, using 65% of the final volume, and mix vigorously for 30 min. Dilute with <u>water</u> to volume and mix.

Sample solution: Nominally 0.045 mg/mL of minocycline from *Sample stock solution* in *Diluent*. Centrifuge and use the clear supernatant. Store at 4° and use within 24 h.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 277 nm. When this procedure is used for *Identification* test *B*, use a diode array detector set at 200–400 nm.

Column: 4.6-mm \times 15-cm; 5- μ m packing $\perp 1$

Temperatures
Column: 35°
Autosampler: 4°
Flow rate: 1.3 mL/min
Injection volume: 10 µL

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of minocycline $(C_{23}H_{27}N_3O_7)$ in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

 r_{II} = peak response from the Sample solution

 r_S = peak response from the Standard solution

 C_S = concentration of <u>USP Minocycline Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of minocycline in the Sample solution (mg/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/ μ g

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• **Dissolution** (711)

Test 1

Protect solutions containing minocycline from light.

Medium: pH 6.8 phosphate buffer; 900 mL

Apparatus 2: 50 rpm **Times:** 1, 2, and 5 h

Standard stock solution: 0.5 mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> in *Medium* **Standard solution:** (L/900) mg/mL of minocycline from *Standard stock solution* in *Medium*, where L is

the label claim of minocycline in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

Instrumental conditions

Mode: UV

Analytical wavelength: 348 nm

Cell: See <u>Table 1</u>.

Table 1

Tablet Strength (mg)	Cell Path Length (cm)	
45	0.5	
90	0.2	
135	0.2	

Blank: Medium

Analysis

Samples: Standard solution, Sample solution, and Blank

Autozero the instrument using the Blank.

Calculate the concentration (C_i) of minocycline $(C_{23}H_{27}N_3O_7)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_{IJ}/A_S) \times C_S \times P \times F$$

 A_{II} = absorbance of the Sample solution at time point i

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the Standard solution (mg/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount (Q_i) of minocycline $(C_{23}H_{27}N_3O_7)$ dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ = {
$$[C_2 \times (V - V_S)] + (C_1 \times V_S)$$
} × (1/L) × 100

Result₃ =
$$({C_3 \times [V - (2 \times V_S)]}) + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

 C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See <u>Table 2</u>.

Table 2

Time Point Time (i) (h)		Amount Dissolved (%)	
1 1		20–45	
2 2		40-70	
3 5		NLT 85	

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*. Protect solutions containing minocycline from light.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm **Times:** 1, 2, and 4 h

Standard solution: 0.0225 mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> in *Medium* **Sample solution:** At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 348 nm

Cell: 1 cm Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Autozero the instrument using the Blank.

Calculate the concentration (C_i) of minocycline $(C_{23}H_{27}N_3O_7)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_U/A_S) \times C_S \times D \times P \times F$$

 A_{II} = absorbance of the Sample solution at time point i

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the Standard solution (mg/mL)

D = dilution factor (mL/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μ g/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount (Q_i) of minocycline $(C_{23}H_{27}N_3O_7)$ dissolved at each time point (i):

$$\mathsf{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\mathsf{Result}_3 = \{ (C_3 \times V) + [(C_2 + C_1) \times V_S] \} \times (1/L) \times 100$$

 C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See Table 3.

Table 3

Time Point	Time	Amount Dissolved (%)				
(<i>i</i>)	(h)	45 mg/Tablet 90 mg/Tablet and 135 mg/Tablet				
1	1	40-60 40-60				
2	2	70-95 70-90				
3	4	NLT 85 NLT 85				

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Protect solutions containing minocycline from light.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm **Times:** 0.5, 1.5, and 4 h

Standard solution: 0.021 mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> in *Medium*

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 265 nm

Cell: 1 cm **Blank:** *Medium*

Analysis

Samples: Standard solution and Sample solution

Autozero the instrument using the Blank.

Calculate the concentration (C_i) of minocycline $(C_{23}H_{27}N_3O_7)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_U/A_S) \times C_S \times D \times P \times F$$

 A_{II} = absorbance of the Sample solution at time point i

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (µg/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount (Q_i) of minocycline $(C_{23}H_{27}N_3O_7)$ dissolved at each time point (i):

$$\mathsf{Result}_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ =
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\mathsf{Result}_3 = \{ (C_3 \times V) + [(C_2 + C_1) \times V_S] \} \times (1/L) \times 100$$

 C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See <u>Table 4</u>.

Table 4

Time Point Time (i) (h)		Amount Dissolved (%)
1 0.5		NMT 40
2 1.5		50-95
3 4		NLT 85

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 4: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 4*. Protect solutions containing minocycline from light.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm **Times:** 1, 2, and 4 h

Standard solution: (L/900) mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> in *Medium*, where L is the label claim of minocycline in mg/Tablet

Sample solution: At the times specified, withdraw 5 mL of the solution under test and replace with 5 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 353 nm

Cell: 1 cm Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Autozero the instrument using the *Blank*.

Calculate the concentration (C_i) of minocycline $(C_{23}H_{27}N_3O_7)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_U/A_S) \times C_S \times D \times P \times F$$

 A_U = absorbance of the Sample solution at time point i

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the Standard solution (mg/mL)

D = dilution factor (mL/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μ g/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount (Q_i) of minocycline $(C_{23}H_{27}N_3O_7)$ dissolved at each time point (i):

$$\mathsf{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ =
$$\{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C285995-M2417-SM12020, rev. 00 20201218

 C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See <u>Table 5</u>.

Table 5

Time Point	Time	Amount Dissolved (%)			
(<i>i</i>)	(h)	45 mg/Tablet and 90 mg/Tablet 135 mg/Tablet			
1	1	35-50	35-50		
2	2	63-78	67-82		
3	4	NLT 90	NLT 90		

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*. Protect solutions containing minocycline from light.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm **Times:** 1, 2, and 4 h

Mobile phase: <u>Dimethylformamide</u>, <u>tetrahydrofuran</u>, 0.2 M <u>ammonium oxalate</u> solution, and 0.01 M <u>edetate disodium</u> solution (120:80:600:180). Adjust with <u>ammonium hydroxide</u> to a pH of 7.2.

Standard stock solution: 0.55 mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> prepared as follows. Transfer a suitable amount of <u>USP Minocycline Hydrochloride RS</u> to a suitable volumetric flask, and dissolve with 70% of the flask volume of *Medium* and sonicate for 5 min. Dilute with *Medium* to volume.

Standard solution: (L/900) mg/mL of minocycline from *Standard stock solution* in *Medium*, where L is the label claim of minocycline in mg/Tablet

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter and dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 280 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing <u>L1</u>

Column: 40°

Autosampler: 10° Flow rate: 1.5 mL/min Injection volume: 50 µL Run time: NLT 1.5 times the retention time of minocycline

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of minocycline $(C_{23}H_{27}N_3O_7)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(r_{IJ}/r_S) \times C_S \times P \times F$$

 r_{II} = peak response of minocycline from the Sample solution at time point i

 r_S = peak response of minocycline from the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount (Q_i) of minocycline $(C_{23}H_{27}N_3O_7)$ dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ =
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\mathsf{Result}_3 = \{ (C_3 \times V) + [(C_2 + C_1) \times V_S] \} \times (1/L) \times 100$$

 C_j = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See <u>Table 6</u>.

Table 6

Time		Amount Dissolved (%)					
Point (i)		45 65, 90, and 80 105 135 mg/Tablet 115 mg/Tablet mg/Tablet mg/Tablet mg/Tablet					
1	1	40-60	40-60	40-60	40-60	30-50	
2	2	75-95	70-95	75-95	70-85	60-80	
3	4	NLT 80	NLT 85	NLT 85	NLT 85	NLT 80	

The percentages of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 7: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 7*. Protect solutions containing minocycline from light.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm **Times:** 1, 2, and 4 h

Standard stock solution: 0.75 mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> prepared as follows. Transfer a suitable amount of <u>USP Minocycline Hydrochloride RS</u> to a suitable volumetric flask, and dissolve with 50% of the flask volume of *Medium* and sonicate to dissolve. Dilute with *Medium* to volume.

Standard solution: 0.015 mg/mL of minocycline in *Medium* from the *Standard stock solution* **Sample solution:** At the times specified, withdraw 15 mL of the solution under test and replace with 15 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions and Analysis: Proceed as directed in Test 2.

Tolerances: See <u>Table 7</u>.

Table 7

Time		Amount Dissolved (%)			
Point (i)	Time (h)	45 80 105 135 mg/Tablet mg/Tablet mg/Tablet			
1	1	30-55	25-50	30-65	50-80
2	2	55-75	60-90	NLT 85	NLT 85
3	4	NLT 85	NLT 85	NLT 85	NLT 85

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

▲ **Test 8:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 8*. Protect solutions containing minocycline from light.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm Times: 0.5, 1.5, and 4 h

Mobile phase: <u>Dimethylformamide</u>, <u>tetrahydrofuran</u>, 0.2 M <u>ammonium oxalate</u> solution, and 0.01 M <u>edetate disodium</u> solution (120:80:600:180). Adjust with <u>ammonia TS</u> to a pH of 7.0.

Standard solution: (L/900) mg/mL of minocycline from <u>USP Minocycline Hydrochloride RS</u> in *Medium*, where L is the label claim of minocycline in mg/Tablet

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 348 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Temperatures

Autosampler: 5°

Column: 40°

Flow rate: 1.5 mL/min
Injection volume: 10 μL

Run time: NLT 1.6 times the retention time of minocycline

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of minocycline $(C_{23}H_{27}N_3O_7)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(r_U/r_S) \times C_S \times P \times F$$

 r_U = peak response of minocycline from the Sample solution at time point i

r_s = peak response of minocycline from the Standard solution

 C_S = concentration of the *Standard solution* (mg/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ =
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ =
$$\{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 $\frac{C_i}{mg/mL}$ = concentration of minocycline in the portion of sample withdrawn at the specified time point

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See Table 8.

Table 8

Time Point	Time	Amount Dissolved (%)			
(<i>i</i>)	(h)	45 mg/Tablet 80, 90, 105, and 135 mg/Tablet			
1	0.5	20-35	17-32		
2	1.5	44-64 39-59			

Time Point	Time	Amount Dissolved (%)		
(<i>i</i>)	(h)	45 mg/Tablet 80, 90, 105, and 135 mg/Tablet		
3	4	NLT 80	NLT 80	

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>. \blacktriangle (RB 1-Jan-2021)

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Protect solutions containing minocycline from light.

Buffer, Mobile phase, and **Diluent:** Prepare as directed in the *Assay*.

Standard stock solution: Use the *Standard solution* as directed in the *Assay*.

Standard solution: 0.009 mg/mL of minocycline from *Standard stock solution* in *Diluent*. Store at 4° and use within 24 h.

Sample solution: Use the *Sample stock solution* as directed in the *Assay*.

Sensitivity solution: 0.9 μ g/mL of minocycline from *Standard solution* in *Diluent*. Store at 4° and use within 24 h.

System suitability solution: Heat a portion of the *Standard stock solution* at 60° for about 2 h and cool. This solution contains a mixture of 4-epiminocycline and minocycline. Store at 4° and use within 24 h.

Chromatographic system: Proceed as directed in the Assay, except use a flow rate of 1 mL/min.

System suitability

Samples: Standard solution, Sensitivity solution, and System suitability solution

Suitability requirements

Resolution: NLT 4.6 between minocycline and 4-epiminocycline, System suitability solution

Tailing factor: NMT 1.5, Standard solution

Relative standard deviation: NMT 2.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

 r_{II} = peak response of each impurity from the Sample solution

 r_c = peak response of minocycline from the Standard solution

 C_S = concentration of <u>USP Minocycline Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of minocycline in the Sample solution (mg/mL)

P = potency of minocycline in <u>USP Minocycline Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/ μ g

Acceptance criteria: See <u>Table</u> <u>△9. (RB 1-Jan-2021)</u> The reporting threshold is 0.1%.

Table [▲]9_{▲ (RB 1-Jan-2021)}

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
4-Epiminocycline ^a	0.38	4.0
Desmethyl minocycline ^{b,c}	0.46	_
Sancycline ^{b,d}	0.68	_
5a,6-Anhydrominocycline ^{b,<u>e</u>}	0.81	_
Hydroxymethylminocycline ^b , ^f	0.92	_
Minocycline	1.0	_
Any individual unspecified degradation product	_	0.2
Total degradation products ^g	_	2.0

a (4R,4aS,5aR,12aS)-4,7-Bis(dimethylamino)-3,10,12,12a-tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Store in tightly closed containers at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11)

 USP Minocycline Hydrochloride RS

Page Information:

Not Applicable

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.

b Process impurities are controlled in the drug substance and are not to be reported here. They are not included in total degradation products.

c (4*S*,4a*S*,5a*R*,12a*S*)-4-Dimethylamino-3,10,12,12a-tetrahydroxy-7-methylamino-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

d 6-Demethyl-6-deoxytetracycline; (4*S*,4a*S*,5a*R*,12a*S*)-4-Dimethylamino-3,10,12,12a-tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

e (4*S*,4a*S*,12a*S*)-4,7-Bis(dimethylamino)-3,10,11,12a-tetrahydroxy-1,12-dioxo-1,4,4a,5,12,12a-hexahydrotetracene-2-carboxamide.

f (4*S*,4a*S*,5a*R*,12a*S*)-4,7-Bis(dimethylamino)-3,10,12,12a-tetrahydroxy-*N*-(hydroxymethyl)-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

^g Total degradation products does not include 4-epiminocycline.