

Potassium Chloride Extended-Release Tablets

Type of PostingRevision BulletinPosting Date18-May-2020Official Date19-May-2020

Expert Committee Chemical Medicines Monographs 5

Reason for Revision Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 5 Expert Committee has revised the Potassium Chloride Extended-Release Tablets monograph. The purpose for the revision is to add a new *Dissolution Test 7* to accommodate FDA-approved drug products with different dissolution conditions and tolerances than the existing dissolution tests.

The Potassium Chloride Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Ren-Hwa Yeh, Senior Scientific Liaison (301-998-6818 or rhy@usp.org).

Revision Bulletin
Official: May 19, 2020

Potassium Chloride Extended-Release Tablets

DEFINITION

Potassium Chloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium chloride (KCl).

IDENTIFICATION

• A. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Potassium

Sample solution: A portion of the filtrate, obtained as directed for the designated *Sample stock solution* in the *Assay*

Acceptance criteria: Meet the requirements

• B. Identification Tests—General (191), Chemical Identification Tests, Chloride

Sample solution: A portion of the filtrate, obtained as directed for the designated *Sample stock solution* in the *Assay*

Acceptance criteria: Meet the requirements

ASSAY

PROCEDURE

[Note—If necessary, first score nonsugar-coated Tablets. Retain a portion of the filtrate of either *Sample stock* solution 1 or *Sample stock solution* 2 for use in *Identification A* and *B*.]

Standard stock solution: 19.07 μ g/mL of <u>potassium chloride</u>, previously dried at 105° for 2 h, in <u>water</u>. This solution contains 10 μ g/mL of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with <u>water</u> to volume. The *Standard solutions* contain 1.0, 1.5, and 2.0 µg/mL of potassium, respectively.

Sample preparation 1

Sample stock solution 1: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a suitable container with 400 mL of <u>water</u>, heat to boiling, and boil for 20 min. Allow to cool, transfer the solution to a 1000-mL volumetric flask, and dilute with <u>water</u> to volume. Filter and discard the first 20 mL of the filtrate. Transfer a measured volume of the subsequent filtrate, equivalent to 60 mg of potassium chloride, to a 1000-mL volumetric flask, and dilute with <u>water</u> to volume.

Sample solution 1: Nominally 3 μg/mL of potassium chloride prepared as follows. Transfer 5.0 mL of *Sample stock solution 1* to a 100-mL volumetric flask, add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with <u>water</u> to volume.

Sample preparation 2 (for formulations containing crystals coated with hydrophobic polymers)

Sample stock solution 2: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a 2000-mL volumetric flask. Add 1200 mL of a mixture of acetonitrile and water (1:1), and shake by mechanical means, or stir using a magnetic bar for 90 min. Dilute with the mixture of acetonitrile and water (1:1) to volume. Allow to stand for 90 min. Pass through a filter of 0.2-μm pore size. Transfer a measured volume of the filtrate, and quantitatively dilute with water to obtain a solution with a concentration of 0.06 mg/mL. [Note—Alternatively, Sample stock solution 2 can be prepared by the following procedure. Nominally 0.15 mg/mL of potassium chloride from NLT 20 finely powdered Tablets, prepared as follows. Transfer an appropriate amount of the powder, equivalent to about 5–6 Tablets, to a suitable volumetric flask, add 10% of the final flask volume of acetone, and sonicate for 45 min with intermittent shaking. Add 80% of the final flask volume of water and sonicate for 45 min with intermittent shaking. Cool to room temperature and dilute with water to volume. Centrifuge a portion of

the solution at 5000 rpm for 10 min. Transfer an appropriate amount of the supernatant to a 100-mL volumetric flask and dilute with <u>water</u> to volume to obtain a solution with a concentration of 0.15 mg/mL.]

Sample solution 2: Nominally 3 µg/mL of potassium chloride prepared as follows. Transfer an appropriate amount of *Sample stock solution 2* to a 100-mL volumetric flask, add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with water to volume.

Instrumental conditions

(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Water

Analysis

Samples: Standard solutions, Sample solution 1 or Sample solution 2, and Blank

Plot the absorbances of the *Standard solutions* versus the concentration of potassium, in μ g/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the *Sample solution* (μ g/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCl) in each Tablet taken:

Result =
$$(C/C_{II}) \times (M_r/A_r) \times 100$$

C = concentration of potassium in the Sample solution as determined in this test (μ g/mL)

 C_{II} = nominal concentration of potassium chloride in the Sample solution (µg/mL)

 M_{r} = molecular weight of potassium chloride, 74.55

 A_r = atomic weight of potassium, 39.10

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• Dissolution (711)

Test 1

Medium: Water; 900 mL Apparatus 2: 50 rpm

Time: 2 h

Standard stock solution: 19.07 μ g/mL of potassium chloride, previously dried at 105° for 2 h, in <u>water</u>. This solution contains 10 μ g/mL of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with <u>water</u> to volume. The *Standard solutions* contain, respectively, 1.0, 1.5, and 2.0 μg/mL of potassium.

Sample stock solution: Filter the solution under test, and dilute with *Medium* to obtain a solution containing nominally 60 µg/mL of potassium chloride.

Sample solution: Transfer 5.0 mL of the *Sample stock solution* to a 100-mL volumetric flask. Add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with <u>water</u> to volume.

Instrumental conditions

(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Water

Analysis

Samples: Standard solutions, Sample solution, and Blank

Plot the absorbances of the *Standard solutions* versus the concentration of potassium, in μ g/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the *Sample solution* (μ g/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCI) dissolved:

Result =
$$[C \times D \times (V/L)] \times (M_r/A_r) \times 100$$

C = concentration of potassium in the Sample solution as determined in this test (μ g/mL)

D = dilution factor of the Sample solution

V = volume of Medium, 900 mL

L = labeled amount of potassium chloride (μ g/Tablet)

 M_r = molecular weight of potassium chloride, 74.55

 A_r = atomic weight of potassium, 39.10

Tolerances: NMT 35% (Q) of the labeled amount of potassium chloride (KCl) is dissolved in 2 h. The requirements are met if the quantities dissolved from the Tablets tested conform to <u>Table 1</u> instead of the table shown in <u>Dissolution</u> (711).

Table 1

	Number	·		
Stage	Tested	Criteria		
		Each unit is within the range		
S_1	6	Q ± 30%.		
		Average of 12 units $(S_1 + S_2)$ is within the range between Q –		
S_2	6	30% and $Q + 35\%$, and no unit is outside the range $Q \pm 40\%$.		
		Average of 24 units $(S_1 + S_2 + S_3)$ is within the range		
		between $Q-30\%$ and $Q+35\%$, and NMT 2 units are outside		
S_3	12	the range $Q \pm 40\%$.		

Test 2: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test* 2.

Standard stock solution and **Standard solutions:** Prepare as directed in *Test 1*.

Medium: Water; 900 mL Apparatus 2: 50 rpm Times: 1, 2, 4, and 8 h

Sample stock solution: Transfer 4.0 mL of the solution under test into either a 50-mL volumetric flask (for 750-mg Tablet) or a 100-mL volumetric flask (for 1500-mg Tablet), dilute with <u>water</u> to volume, and filter.

Sample solution: Transfer 4.0 mL of the *Sample stock solution* to a 100-mL volumetric flask. Add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with <u>water</u> to volume.

Blank solution: To a 100-mL volumetric flask, add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric acid</u>, and dilute with <u>water</u> to volume.

Instrumental conditions: Proceed as directed in *Test 1*, except do not use the *Blank*.

System suitability

Samples: Standard solutions **Suitability requirements**

Linearity: Correlation coefficient NLT 0.99

Relative standard deviation: NMT 5.0% from 5 replicate analyses of the 1.5-µg/mL Standard

solution

Analysis

Samples: 1.5-µg/mL *Standard solution, Sample solution*, and *Blank solution*Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

Result_i =
$$[(A_U/A_S) \times C_S \times D \times (V/L)] \times (M_r/A_r) \times 100$$

 A_{II} = absorbance of potassium in the Sample solution

 A_S = absorbance of potassium in the *Standard solution*

 C_S = concentration of potassium in the Standard solution (µg/mL)

D = dilution factor of the Sample solution

V = volume of *Medium*, 900 mL

L = labeled amount of potassium chloride (μ g/Tablet)

 M_r = molecular weight of potassium chloride, 74.55

 A_r = atomic weight of potassium, 39.10

Tolerances: See <u>Table 2</u>.

Table 2

Time Point	Time	Amount Dissolved (%)		
(<i>i</i>)	(h)	750 mg/Tablet	1500 mg/Tablet	
1	1	10-30	5–25	
2	2	30-50	25-45	
3	4	60-80	55-75	
4	8	NLT 80	NLT 85	

The percentages of the labeled amount of potassium chloride (KCI), dissolved at the times specified, conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 3: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test* 3.

Medium: <u>Water;</u> 900 mL **Apparatus 2:** 50 rpm **Times:** 0.5, 2, 4, and 10 h

Mobile phase: 20 mM methanesulfonic acid in water

Standard solution: (*L*/900) mg/mL of <u>USP Potassium Chloride RS</u> in <u>water</u>, where *L* is the label claim of potassium chloride in mg/Tablet, prepared as follows. Transfer an appropriate quantity of <u>USP Potassium Chloride RS</u> to a suitable volumetric flask. Add 50% of the flask volume of <u>water</u> and sonicate to dissolve. Dilute with <u>water</u> to volume.

Sample solution: Pass a portion of the solution under test through a filter with a suitable pore size and use the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: Conductivity with suppression

Column: 4.0-mm \times 25-cm; 8.5- μ m packing $L106^{1}$

Column temperature: 30° Flow rate: 1.0 mL/min Injection volume: $5 \mu L$

Run time: NLT 2 times the retention time of potassium

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at each time point (i):

Result_i =
$$(r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

 r_U = peak response of potassium from the Sample solution

 r_S = peak response of potassium from the *Standard solution*

 C_S = concentration of <u>USP Potassium Chloride RS</u> in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim of potassium chloride (mg/Tablet)

Tolerances: See Table 3.

Table 3

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	0.5	15-35
2	2	40-60
3	4	60-80
4	10	NLT 80

The percentages of the labeled amount of potassium chloride (KCI), dissolved at the times specified, conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 4: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test* 4.

Standard stock solution and **Instrumental conditions:** Proceed as directed in *Test 1*, except for the

Medium: Water; 900 mL, degassed

Apparatus 2: 50 rpm **Times:** 2, 4, and 8 h

Sodium chloride solution: 0.2 g/mL of sodium chloride in water

Hydrochloric acid solution: Dilute 100 mL of hydrochloric acid with 300 mL of water.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of *Sodium chloride solution* and 4.0 mL of *Hydrochloric acid solution*, and dilute with water to volume. The *Standard solutions* contain 1.0, 1.5, and 2.0 μg/mL of potassium, respectively.

Sample stock solution: Pass a portion of the solution under test through a filter with a suitable pore size and use the filtrate.

Sample solution: Transfer 1.0 mL of the *Sample stock solution* to a suitable volumetric flask and dilute with <u>water</u> if necessary. To the final dilution, add 2.0% flask volume of *Sodium chloride solution* and 4.0% flask volume of *Hydrochloric acid solution*, and dilute with <u>water</u> to volume.

Blank: To a suitable volumetric flask, add 2.0% flask volume of *Sodium chloride solution* and 4.0% flask volume of *Hydrochloric acid solution*, and dilute with <u>water</u> to volume.

System suitability

Samples: Standard solutions **Suitability requirements**

Linearity: Correlation coefficient NLT 0.999

Relative standard deviation: NMT 1.5% from the absorbance responses of 5 replicate analyses of

each Standard solution

Analysis: Proceed as directed in *Test 1*.

Tolerances: See <u>Table 4</u>.

Table 4

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	22–42
2	4	44-64
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCI), dissolved at the times specified, conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 5: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test* 5.

Medium: Water; 900 mL Apparatus 2: 50 rpm Times: 1, 2, and 8 h

Dilute glacial acetic acid solution: Dilute 25 mL of glacial acetic acid with 75 mL of water.

Saturated potassium sulfate solution: Dissolve sufficient quantities of <u>potassium sulfate</u> in a suitable volume of <u>water</u> until undissolved particles appear in the solution.

0.01 N silver nitrate solution: Transfer 10 mL of <u>0.1 N silver nitrate VS</u> to a 100-mL volumetric flask and dilute with <u>water</u> to volume.

Standard solution: (L/900) mg/mL of <u>potassium chloride</u>, previously dried at 105° for 2 h, in <u>water</u>, where L is the label claim in mg/Tablet. Pass the solution through a suitable filter.

Sample solution: Withdraw 10 mL of the solution under test at the specified time points and pass a suitable portion of the solution through a suitable filter. Replace each of the volumes withdrawn with an equal volume of the *Medium*.

Blank: *Medium* Titrimetric system

(See <u>Titrimetry (541)</u>.) **Mode:** Direct titration

Titrant: 0.01 N silver nitrate solution **Endpoint detection:** Potentiometric

System suitability

Sample: Standard solution

Transfer 5 mL of *Standard solution* into a titration vessel and add 25 mL of <u>water</u>, 5 mL of *Dilute glacial acetic acid solution*, and 0.1 mL of *Saturated potassium sulfate solution* to the vessel. Titrate with *Titrant* and determine the endpoint potentiometrically.

Suitability requirements

Relative standard deviation: NMT 2.0% from 5 replicate analyses

Analysis

Samples: Sample solution and Blank

Transfer 5 mL of each solution into separate titration vessels and add 25 mL of <u>water</u>, 5 mL of <u>Dilute</u> glacial acetic acid solution, and 0.1 mL of <u>Saturated potassium sulfate solution</u> to each vessel. Titrate with <u>Titrant</u> and determine the endpoint potentiometrically.

Calculate the concentration (C_i) of potassium chloride (KCI) in the sample withdrawn from the vessel at each time point (i):

$$Result_i = (V_U - V_B) \times N \times F \times (1/V_S)$$

 V_U = volume of *Titrant* used to titrate the *Sample solution*

 V_B = volume of *Titrant* used to titrate the *Blank*

N = actual normality of Titrant (mEq/mL)

F = equivalency factor, 74.55 mg/mEq

 V_S = volume of Sample solution used in the test, 5 mL

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

$$Result_2 = [(C_2 \times V) + (C_1 \times V_W)] \times (1/L) \times 100$$

Result₃ =
$$[(C_3 \times V) + (C_2 + C_1) \times V_W] \times (1/L) \times 100$$

 C_i = concentration of potassium chloride in the portion of sample withdrawn at the specific time point

V = volume of Medium, 900 mL

L = labeled amount of potassium chloride (mg/Tablet)

 V_{yy} = volume of Sample solution withdrawn from vessel, 10 mL

Tolerances: See <u>Table 5</u>.

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	22–42
2	2	38-58
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCI), dissolved at the times specified, conform to *Dissolution* (711), *Acceptance Table 2*.

Test 6: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test* 6.

Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.

Medium: Water; 900 mL Apparatus 2: 50 rpm Times: 1, 2, and 8 h

0.1 M sulfuric acid solution: Transfer 10 mL of 1 M sulfuric acid TS into a 100-mL volumetric flask and

dilute with water to volume.

Mobile phase: 0.01 M sulfuric acid in <u>water</u>, from 0.1 M sulfuric acid solution **Standard solution:** 0.83 mg/mL of <u>USP Potassium Chloride RS</u> in <u>water</u>

Sample solution: Pass a portion of the solution under test through a filter with a suitable pore size and

use the filtrate. Discard the first 2 mL of the filtrate.

Blank solution: Medium
Chromatographic system

(See <u>Chromatography (621), System Suitability.)</u>

Mode: LC

Detector: Conductivity with suppression

Columns

Guard: 4.0-mm \times 5-cm; 8.5- μ m packing <u>L106</u>¹

Analytical: 4.0-mm \times 25-cm; 8.5- μ m packing <u>L106</u>¹

Temperatures
Column: 30°
Cell: 35°

Flow rate: 1.0 mL/min Injection volume: 10 µL

Run time: NLT 2 times the retention time of potassium

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of potassium chloride (KCI) in the sample withdrawn from the vessel at each time point (i):

$$C_i = (r_U/r_S) \times C_S$$

 r_{ij} = peak response of potassium from the Sample solution

 r_s = peak response of potassium from the Standard solution

 C_S = concentration of <u>USP Potassium Chloride RS</u> in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at the specified time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ = {
$$[C_2 \times (V - V_S)] + (C_1 \times V_S)$$
} × (1/L) × 100

$$\mathsf{Result}_3 = \{C_3 \times [(V - (2 \times V_S)] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of potassium chloride in the portion of the sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of Sample solution withdrawn at each time point (mL)

Tolerances: See Table 6.

Table 6

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	1	23-43
2	2	40-60
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCI), dissolved at the times specified, conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

▲ Test 7: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution*Test 7.

Apparatus 2, Standard stock solution, Standard solutions, Sample solution, and Instrumental conditions: Proceed as directed in *Test 1*.

Medium: Water; 900 mL, degassed

Times: 1, 3, and 8 h

Sample stock solution: At each specified time point, withdraw 15 mL of the solution under test and pass a portion of the solution through a filter with a suitable pore size, discard the first 2 mL, and use the filtrate. Further dilute the filtrate with <u>water</u> as appropriate, ensuring the nominal concentration of

Sample solution is within the linearity range of the Standard solutions. [Note—Do not replace the Medium at the time of sampling.]

System suitability

Samples: Standard solutions **Suitability requirement**

Linearity: Correlation coefficient NLT 0.995

Recovery: 90%-110%, back calculated from the 1.5 μg/mL Standard solution

Analysis: Proceed as directed in *Test 1*.

Plot the absorbances of the *Standard solutions* versus the concentration of potassium, in μg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the *Sample solution* (μg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCI) dissolved at each time point (i):

$$Result_1 = C_1 \times D_1 \times V \times (1/L) \times (M_r/A_r) \times 100$$

Result₂ = {
$$[C_2 \times D_2 \times (V - V_S)] + (C_1 \times D_1 \times V_S)$$
} × (1/L) × (M_r/A_r) × 100

Result₃ =
$$({C_3 \times D_3 \times [V - (2 \times V_S)]}) + {[(C_2 \times D_2) + (C_1 \times D_1)] \times V_S}) \times (1/L) \times (M_r/A_r) \times 100$$

 C_i = concentration of potassium in the Sample solution at the specified time point (μ g/mL)

D_i = dilution factor of the Sample solution at the specified time point

V = volume of *Medium*, 900 mL

L = labeled amount of potassium chloride (μg/Tablet)

 M_r = molecular weight of potassium chloride, 74.55

 A_r = atomic weight of potassium, 39.10

 V_S = volume of Sample solution withdrawn at each time point, 15 mL

Tolerances: See <u>Table 7</u>.

Table 7

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 22
2	3	37-57
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>. ▲ (RB 19-May-2020)

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight containers, and store at a temperature not exceeding 30°.

- **LABELING:** The label states with which *Sample preparation* in the *Assay* the product complies only if *Sample preparation 1* is not used. When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11)
 USP Potassium Chloride RS

Page Information:

Not Applicable

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.

¹ Weak cation-exchange resin consisting of ethylvinylbenzene, 55% cross-linked with divinylbenzene copolymer, 5–8 μm diameter, macroporous particles having an average pore size of 100 Å units. Substrate is surface grafted with carboxylic acid and phosphonic acid functional groups. Capacity NLT 2800 μEq/column (4-mm × 25-cm).