

Potassium Citrate Extended-Release Tablets

Type of Posting Revision Bulletin
Posting Date 30-Oct-2020
Official Date 1-Nov-2020

Expert Committee Non-Botanical Dietary Supplements

In accordance with the Rules and Procedures of the Council of Experts, the Non-Botanical Dietary Supplements Expert Committee has revised the Potassium Citrate Extended-Release Tablets monograph. The purpose for the revision is to add *Dissolution Test 4* to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution tests.

The Potassium Citrate Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Natalia Davydova, Senior Scientific Liaison (301-816-8328 or nd@usp.org).

Potassium Citrate Extended-Release Tablets

DEFINITION

Potassium Citrate Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium citrate as monohydrate ($C_6H_5K_3O_7 \cdot H_2O$).

IDENTIFICATION

• A. Identification Tests—General (191), Chemical Identification Tests, Potassium

Sample solution: Powder 5 Tablets, mix with 20 mL of water, and filter.

Acceptance criteria: The filtrate meets the requirements.

• B. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Citrate

Sample: A portion of powdered Tablets containing about 50 mg of potassium citrate

Acceptance criteria: Meet the requirements

ASSAY

PROCEDURE

Buffer: 3.4 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 2.2.

Mobile phase: Buffer

Standard solution: 0.4 mg/mL of <u>USP Citric Acid RS</u> in *Mobile phase*

Sample stock solution: Weigh and finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to 2000 mg of potassium citrate monohydrate, to a 250-mL volumetric flask, and add 150 mL of hot water (60°-70°). Sonicate for 20 min with occasional shaking. Allow to cool to room temperature, dilute with <u>water</u> to volume, and mix.

Sample solution: Pass a portion of the *Sample stock solution* through a suitable filter of 0.45-µm pore size, discarding the first 5 mL of filtrate. Transfer 4 mL of the filtrate to a 50-mL volumetric flask, dilute with *Mobile phase* to volume, and mix. [Note—Reserve the remaining filtrate for use in the *Content of Potassium* test.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 55°

Flow rate: 1 mL/min **Injection volume:** 20 μL

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7\cdot H_2O$) in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_{II} = citric acid peak area from the Sample solution

 $r_{\rm S}$ = citric acid peak area from the Standard solution

 C_S = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of potassium citrate monohydrate in the Sample solution (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate, 324.41

 M_{r2} = molecular weight of citric acid (C₆H₈O₇), 192.13

Acceptance criteria: 90.0%-110.0%

OTHER COMPONENTS

• CONTENT OF POTASSIUM

Standard stock solution: 19.07 μ g/mL of potassium chloride, previously dried at 105° for 2 h, in water. This solution contains 10 μ g/mL of potassium.

Standard solutions: Transfer 10.0, 15.0, and 20.0 mL, respectively, to separate 100-mL volumetric flasks of the *Standard stock solution*. To each flask, add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume. The *Standard solutions* contain 1.0, 1.5, and 2.0 µg/mL of potassium, respectively.

Sample stock solution: Dilute the clear filtrate, reserved from the *Assay*, with water to obtain a solution containing about 160 μg/mL of potassium citrate monohydrate.

Sample solution: Transfer 3.0 mL of the Sample stock solution to a 100-mL volumetric flask.

Instrumental conditions

(See <u>Atomic Absorption Spectroscopy (852)</u>.)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Water

Analysis

Samples: Standard solutions, Sample solution, and Blank

Plot the absorbance of the *Standard solutions* versus the concentration of potassium, in $\mu g/mL$, and draw the straight line best fitting the three plotted points. From the graph obtained, determine the concentration of potassium in the *Sample solution* ($\mu g/mL$).

Calculate the percentage of potassium (K) in the portion of Tablets taken:

Result =
$$C \times 100/C_{II}$$

C = concentration of potassium in the Sample solution as determined in this test (μ g/mL)

 C_U = concentration of potassium citrate anhydrous ($C_6H_5K_3O_7$) in the Sample solution calculated from the Assay value of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) (µg/mL)

Acceptance criteria: 36.4%-40.2%

PERFORMANCE TESTS

Change to read:

● Dissolution (711)

Test 1

Medium: Water; 900 mL **Apparatus 2:** 50 rpm

Times: 0.5, 1, and 3 h; without *Medium* replacement [Note—Withdraw the same volume at each time point.]

Standard stock solution and **Standard solutions:** Prepare as directed in the *Content of Potassium* test. **Sample solution:** Filter the solution under test and dilute quantitatively with *Medium* to obtain a solution containing about 60 μg of potassium citrate per mL. Transfer 5.0 mL of this solution to a 100-mL volumetric flask, add 2.0 mL of sodium chloride solution (1 in 5) and 1.0 mL of hydrochloric acid. Dilute with water to volume, and mix.

Instrumental conditions

(See <u>Atomic Absorption Spectroscopy (852)</u>.) **Mode:** Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Water Analysis

Samples: Standard solutions, Sample solution, and Blank

Determine the concentration, in $\mu g/mL$, of potassium in the *Sample solution* at each time point. Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7\cdot H_2O$) dissolved at each time point: At 0.5 h:

$$Result_1 = C_1 \times V \times R \times F \times 100/L$$

At 1 h:

$$Result_2 = [C_2 \times (V - V_S) + C_1 \times V_S] \times R \times F \times 100/L$$

At 3 h:

$$\mathsf{Result}_3 = \{C_3 \times [V - 2 \times V_S] + (C_1 + C_2) \times V_S\} \times R \times F \times 100/L$$

 $C = as C_1, C_2, C_3,$ concentration of potassium in the Sample solution at each time point (µg/mL)

V = volume of Medium, 900 mL

R = ratio of the molecular weight of potassium citrate monohydrate to 3 times the atomic weight of potassium, 2.765

F = dilution factor of the Sample solution

L = label claim (mg/Tablet)

 V_S = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium citrate monohydrate $(C_6H_5K_3O_7 \cdot H_2O)$ dissolved from the Tablets are NMT 45% (Q) in 30 min, NMT 60% (Q') in 1 h, and NLT 80% (Q'') in 3 h. The requirements are met if the quantities dissolved from the Tablets tested conform to <u>Table 1</u> instead of the table shown under <u>Dissolution (711)</u>.

Table 1

	Number Acceptance	
Stage	Tested	Criteria
S ₁	1	Each unit is within the range between $Q \pm 10\%$ and $Q' \pm 10\%$, and is NLT $Q'' + 5\%$ at the stated times.

	Number	Acceptance Criteria		
Stage	Tested	Criteria		
		Average of 12 units $(S_1 + S_2)$ is within the range between $Q \pm$		
		10% and $Q'\pm10\%$ and is NLT Q'' ; no unit is outside the range		
	between $Q\pm15\%$ and $Q'\pm15\%$, and no unit is less than $Q''-$			
S ₂	6	5% at the stated times.		
		Average of 24 units $(S_1 + S_2 + S_3)$ is within the range between		
		$Q\pm10\%$ and $Q'\pm10\%$ and is NLT Q'' ; NMT 1 unit is outside the		
		range between $Q\pm15\%$, NMT 1 unit is outside the range		
		between $Q' \pm 15\%$, and NMT 1 unit is less than $Q'' - 5\%$ at the		
S ₃	12	stated times.		

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: Water; 900 mL **Apparatus 2:** 50 rpm

Times: 0.5, 1, 4, and 6 h. Replace the volume withdrawn with the equal volume of *Medium* preheated to

 $37 \pm 0.5^{\circ}$.

Buffer: 3.4 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 2.2.

Mobile phase: Buffer

Standard solution: Prepare a solution of <u>USP Citric Acid RS</u> in *Medium* as directed in <u>Table 2</u>.

Table 2

Tablet Strength (mg, as potassium citrate monohydrate)	Concentration of Citric Acid (mg/mL)	
540	0.35	
1080	0.70	
1620	1.05	

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size, discarding the first 5 mL of filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 55° Flow rate: 1.0 mL/min Injection volume: $20 \mu L$

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Determine the concentration, in mg/mL, of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) in the sample withdrawn from the vessel at each time point:

Result =
$$(r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_{II} = citric acid peak area from the Sample solution

 r_S = citric acid peak area from the *Standard solution*

 C_S = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$), 324.41

 M_{r2} = molecular weight of citric acid ($C_6H_8O_7$), 192.13

Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) dissolved at each time point: At 0.5 h:

$$Result_1 = C_1 \times V \times 100/L$$

At 1 h:

$$Result_2 = (C_2 \times V + C_1 \times V_S) \times 100/L$$

At 4 h:

$$Result_3 = [C_3 \times V + (C_1 + C_2) \times V_S] \times 100/L$$

At 6 h:

$$Result_4 = [C_4 \times V + (C_1 + C_2 + C_3) \times V_S] \times 100/L$$

 $C = \text{as } C_1, C_2, C_3, C_4$, concentration of potassium citrate monohydrate in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) dissolved at the times specified in <u>Table 3</u> conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Table 3

Time	Amount Dissolved
(h)	(%)
0.5	25-50
1	40-65
4	NLT 70
6	NLT 80

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: Deaerated water; 900 mL

Apparatus 2: 50 rpm

[Note—Employ sinker if necessary to ensure that the Tablets do not float.]

Times: 0.5, 1, and 5 h; without *Medium* replacement

[Note—Withdraw the same volume at each time point. Pass a portion of the solution through a 0.45-µm membrane filter, discarding the first 2 mL of the filtrate.]

Diluent: Transfer 5 g of <u>sodium chloride</u> to a 100-mL volumetric flask, add 25 mL of <u>water</u> and 25 mL of <u>concentrated hydrochloric acid</u>, shake until dissolved, cool to room temperature, and dilute with <u>water</u> to volume.

Standard stock solution: 19.07 μ g/mL of <u>potassium chloride</u>, previously dried at 105° for 2 h, in <u>water</u>. This solution contains 10 μ g/mL of potassium.

Standard solutions: Transfer 5.0, 7.0, 10.0, 15.0, and 20.0 mL of *Standard stock solution* to separate 100-mL volumetric flasks. Add 4.0 mL of *Diluent* to each flask, dilute with <u>water</u> to volume, and mix well. The *Standard solutions* contain 0.5, 0.7, 1.0, 1.5, and 2.0 µg/mL of potassium, respectively.

Sample stock solution: Filter the solution under test, and dilute quantitatively with <u>water</u> as stated in <u>Table 4</u>.

5 mEq 10 mEq 15 mEq Time **Tablet Tablet Tablet** (h) Dilution Dilution **Dilution** 0.5 6.0 mL into 25 mL 6.0 mL into 50 mL 4.0 mL into 50 mL 5.0 mL into 25 mL 5.0 mL into 50 mL 3.0 mL into 50 mL 1 5 7.0 mL into 50 mL 7.0 mL into 100 mL 2.0 mL into 50 mL

Table 4

Sample solution: Transfer 5.0 mL of respective *Sample stock solution* into 100-mL volumetric flasks. Add 4.0 mL of *Diluent*, dilute with <u>water</u> to volume, and mix well.

Instrumental conditions

(See <u>Atomic Absorption Spectroscopy (852)</u>.)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Dilute Diluent with water (4:96)

Analysis

Samples: Standard solutions, Sample solution, and Blank

Determine the concentration, in μ g/mL, of potassium in the *Sample solution* at each time point. Calculate the percentage of the labeled amount of potassium dissolved at each time point: At 0.5 h:

$$Result_1 = C_1 \times D_1 \times V \times 100/(L \times A)$$

At 1 h:

$$\mathsf{Result}_2 = [C_2 \times D_2 \times (V - V_S) + C_1 \times D_1 \times V_S] \times 100/(L \times A)$$

At 5 h:

$$\mathsf{Result}_3 = \{C_3 \times D_3 \times [V - 2 \times V_S] + (C_1 \times D_1 + C_2 \times D_2) \times V_S\} \times D \times 100/(L \times A)$$

 $C = as C_{1'} C_{2'} C_{3'}$ concentration of potassium in the Sample solution at each time point

(mg/mL)

 $D = as D_1, D_2, D_3$, dilution factor of the Sample solution at each point

V = volume of Medium, 900 mL

L = label claim (mEq/Tablet)

A = atomic weight of potassium, 39.1

 V_S = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium dissolved at the times specified in <u>Table</u> <u>5</u> conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Table 5

Time	Amount Dissolved	
(h)	(%)	
0.5	30-50	
1	45–65	
5	NLT 85	

▲Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Medium: Water; 900 mL Apparatus 2: 50 rpm.

[Note—Use tablet sinkers if necessary.]

Times: 0.5, 1, and 6 h. Replace the volume withdrawn with the equal volume of *Medium* preheated to 37 \pm 0.5°.

[Note—Withdraw the same volume at each time point. Pass a portion of the withdrawn solution through a 0.45-µm nylon filter, discarding the first 5 mL of filtrate.]

Buffer and Mobile phase: Prepare as directed in Test 2.

Standard solution: Prepare a solution of <u>USP Citric Acid RS</u> in *Medium* as directed in <u>Table 6</u>.

Table 6

Tablet Strength (mg, as potassium citrate monohydrate)	Concentration of Citric Acid (mg/mL)	
1080	0.70	
1620	1.05	

Sample solution: Filtered portion of the solution under test

Chromatographic system and System suitability: Proceed as directed in Test 2.

Analysis

Samples: Standard solution and Sample solution

Determine the concentration, in mg/mL, of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) in the sample withdrawn from the vessel at each time point:

Result =
$$(r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_{II} = peak area of citric acid from the Sample solution

= peak area of citric acid from the Standard solution $r_{\rm S}$

 C_{S} = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate (C₆H₅K₃O₇·H₂O), 324.41

= molecular weight of citric acid (C₆H₈O₇), 192.13 M_{r2}

Calculate the percentage of the labeled amount of potassium citrate monohydrate (C₆H₅K₃O₇·H₂O) dissolved at each time point:

At 0.5 h:

$$Result_1 = C_1 \times V \times (100/L)$$

At 1 h:

$$Result_2 = (C_2 \times V + C_1 \times V_S) \times (100/L)$$

At 6 h:

Result₃ =
$$[C_3 \times V + (C_1 + C_2) \times V_5] \times 100/L$$

 C_i = concentration of potassium citrate monohydrate in the portion of sample withdrawn at the specified time point (mg/mL)

= volume of Medium, 900 mL

= label claim (mg/Tablet)

 V_S = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium citrate monohydrate $(C_6H_5K_3O_7\cdot H_2O)$ dissolved at the times specified in <u>Table 7</u> conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Table 7

Time	Amount Dissolved	
(h)	(%)	
0.5	30-50	
1	45–65	
6	NLT 80	

▲ (RB 1-Nov-2020)

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers.
- Labeling: The label states the amount of potassium citrate as monohydrate $(C_6H_5K_3O_7\cdot H_2O)$ in mEq and in q/Tablet. The label indicates the Dissolution test with which the product complies.
- USP REFERENCE STANDARDS (11) USP Citric Acid RS

Not	۸ ۵	حمنام	hla
Not	ΑP	piica	DIE

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.