

Potassium Chloride Extended-Release Capsules

Type of PostingRevision BulletinPosting Date31-Aug-2018Official Date01-Sep-2018

Expert Committee Chemical Medicines Monographs 5

Reason for Revision Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 5 Expert Committee has revised the Potassium Chloride Extended-Release Capsules monograph. The purpose for the revision is to add *Dissolution Test 2* to accommodate FDA-approved drug products with different tolerances than the existing dissolution test. *Labeling* information has been incorporated to support the inclusion of *Dissolution Test 2*.

Additionally, minor editorial changes have been made to update the monograph to current *USP* style.

The Potassium Chloride Extended-Release Capsules Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Ren-Hwa Yeh, Ph.D., Senior Scientific Liaison (301-998-6818 or rhy@usp.org).

Potassium Chloride Extended-Release Capsules

DEFINITION

Potassium Chloride Extended-Release Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium chloride (KCI).

IDENTIFICATION

• A. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Potassium

Sample solution: A portion of the filtrate, obtained as directed for Sample stock solution in the Assay Acceptance criteria: Meet the requirements

• B. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Chloride

Sample solution: A portion of the filtrate, obtained as directed for Sample stock solution in the Assay Acceptance criteria: Meet the requirements

ASSAY

PROCEDURE

Standard stock solution: $19.07 \,\mu g/mL$ of potassium chloride, previously dried at 105° for 2 h, in water. This solution contains 10 µg/mL of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of Standard stock solution. To each flask add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume. The Standard solutions contain, respectively, 1.0, 1.5, and 2.0 µg/mL of potassium.

Sample stock solution: Place NLT 20 Capsules in a suitable container with 400 mL of water, heat to boiling, and boil for 20 min. Allow to cool, transfer the solution to a 1000-mL volumetric flask, and dilute with water to volume. Filter, discarding the first 20 mL of the filtrate. Transfer a measured volume of the subsequent filtrate, equivalent to 60 mg of potassium chloride, to a 1000-mL volumetric flask, and dilute with water to volume. [Note—Retain a portion of the filtrate for use in the Identification tests.]

Sample solution: Transfer 5.0 mL of Sample stock solution to a 100-mL volumetric flask. Add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume. Instrumental conditions

(See Atomic Absorption Spectroscopy (852).) Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5

Lamp: Potassium hollow-cathode

Flame: Air-acetylene Blank: Water

Analysis

Samples: Standard solutions, Sample solution, and Blank Plot the absorbance of the Standard solutions versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the Sample solution (µg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCI) in each Capsule taken:

Result =
$$(C/C_U) \times (M_r/A_r) \times 100$$

C = concentration of potassium in the Sample solution as determined in this test (µg/mL)

= concentration of potassium chloride in the C_U Sample solution (µg/mL)

= molecular weight of potassium chloride, M,

= atomic weight of potassium, 39.10 A_r

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

Dissolution (711)

▲Test 1_{▲ (RB 1-Sep-2018)} Medium: Water; 900 mL Apparatus 1: 100 rpm

Time: 2 h

Standard stock solution: 19.07 $\mu g/mL$ of potassium chloride, previously dried at 105° for 2 h, in water. This solution contains 10 µg/mL of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of Standard stock solution. To each flask add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume. The Standard solutions contain, respectively, 1.0, 1.5, and 2.0 µg/mL of potassium.

Sample stock solution: Filter the solution under test, and dilute quantitatively with *Medium* to obtain a solution containing 60 µg/mL of potassium chloride.

Sample solution: Add 5.0 mL of the Sample stock solution to a 100-mL volumetric flask, add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume. **Instrumental conditions**

(See Atomic Absorption Spectroscopy (852).) Mode: Atomic absorption spectrophotometry Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene Blank: Water **Analysis**

Samples: Standard solutions, Sample solution, and Blank Plot the absorbance of the Standard solutions versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the Sample solution (µg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCI) dissolved:

Result =
$$[C \times D \times (V/L)] \times (M_r/A_r) \times 100$$

C = concentration of potassium in the Sample solution as determined in this test (µg/mL) D = dilution factor of the Sample solution

= volume of Medium, 900 mL

L = labeled amount of potassium chloride (µg/ Capsule)

= molecular weight of potassium chloride, M,

= atomic weight of potassium, 39.10 A_r

Tolerances: NMT 35% (Q) of the labeled amount of potassium chloride (KCl) is dissolved in 2 h. The requirements are met if the quantities dissolved from the Capsules tested conform to Table 1 instead of to the table shown in *Dissolution* $\langle 711 \rangle$.

Table 1

Stage	Number Tested	Acceptance Criteria	
Si	6	Each unit is within the range $Q \pm 30\%$.	
S ₂	6	Average of 12 units $(S_1 + S_2)$ is within the range between $Q - 30\%$ and $Q + 35\%$, and no unit is outside the range $Q \pm 40\%$.	
S ₃	12	Average of 24 units $(S_1 + S_2 + S_3)$ is within the range between $Q - 30\%$ and $Q + 35\%$, and NMT 2 units are outside the range $Q \pm 40\%$.	

▲ Test 2: If the product complies with this procedure, the labeling indicates that it meets USP Dissolution Test 2. Standard stock solution and Standard solutions:

Prepare as directed in *Test 1*. **Medium**: Water; 900 mL **Apparatus 1**: 100 rpm **Times**: 1, 2, 4, and 6 h

Sample stock solution: Transfer 4.0 mL of the solution under test into a 50-mL volumetric flask, dilute with

water to volume, and filter.

Sample solution: Transfer 4.0 mL of the Sample stock solution to a 100-mL volumetric flask. Add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume.

Blank solution: To a 100-mL volumetric flask, add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with water to volume.

Instrumental conditions: Proceed as directed in *Test 1*,

except do not use the Blank.

System sutability

Samples: Standard solutions
Suitability requirements

Linearity: Correlation coefficient NLT 0.99 **Relative standard deviation:** NMT 5.0% from 5 replicate analyses of the 1.5-µg/mL *Standard solution*

Analysis

Samples: 1.5-µg/mL Standard solution, Sample solution, and Blank solution

Calculate the percentage of the labeled amount of potassium chloride (KCI) dissolved:

Result_i = $[(A_U/A_S) \times C_S \times D \times (V/L)] \times (M_r/A_r) \times 100$

A_{ij}	= absorbance of potassium in the Sample
_	solution

A_s = absorbance of potassium in the Standard solution

C_S = concentration of potassium in the *Standard* solution (μg/mL)

= dilution factor of the Sample solution

= volume of *Medium*, 900 mL

= labeled amount of potassium chloride (μg/ Capsule)

M_r = molecular weight of potassium chloride, 74.55

 A_r = atomic weight of potassium, 39.10

Tolerances: See Table 2.

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%) 750 mg/Capsule
1	1	25–45
2	2	45–65
3	4	70–90
4	6	NLT 85

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to *Dissolution* (711), *Acceptance Table* 2. • (RB 1-Sep-2018)

 Uniformity of Dosage Units (905): Meet the requirements

ADDITIONAL REQUIREMENTS

 PACKAGING AND STORAGE: Preserve in tight containers, and store at a temperature not exceeding 30°.

Add the following:

^• **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used. ▲ (RB 1-Sep-2018)